Nenegativa entjera potenco de 2


En matematiko, nenegativa entjera potenco de 2 (plu ĉi tie simple potenco de 2) estas ĉiu de la nenegativa entjero potenco de la nombro 2; en aliaj vortoj 2 multiplikiĝita per si certan nombron de fojoj. 1 estas la 0-a povo de 2. Skribita en duuma sistemo, ĉi tia potenco de 2 ĉiam havas formon 10000…0, simile al potenco de 10 en la dekuma sistemo.

Ĉar 2 estas la bazo de la duuma sistemo, potencoj de 2 estas gravaj en komputiko.

Enhavo

La unuaj 40 potencoj de 2


21
=
2      
211
=
2,048      
221
=
2,097,152      
231
=
2,147,483,648
22
=
4
212
=
4,096
222
=
4,194,304
232
=
4,294,967,296
23
=
8
213
=
8,192
223
=
8,388,608
233
=
8,589,934,592
24
=
16
214
=
16,384
224
=
16,777,216
234
=
17,179,869,184
25
=
32
215
=
32,768
225
=
33,554,432
235
=
34,359,738,368
26
=
64
216
=
65,536
226
=
67,108,864
236
=
68,719,476,736
27
=
128
217
=
131,072
227
=
134,217,728
237
=
137,438,953,472
28
=
256
218
=
262,144
228
=
268,435,456
238
=
274,877,906,944
29
=
512
219
=
524,288
229
=
536,870,912
239
=
549,755,813,888
210
=
1,024
220
=
1,048,576
230
=
1,073,741,824
240
=
1,099,511,627,776

Potencoj de 2, kies eksponentoj estas potencoj de 2


Ĉar modernaj memorĉeloj ofte registras nombron da bitoj kiu estas potenco de 2, la plej ofte uzataj potencoj de 2 estas tiuj kies eksponento estas ankaŭ potenco de 2. Ekzemple:

2¹ = 2
2² = 4
24 = 16
28 = 256
216 = 65,536
232 = 4,294,967,296
264 = 18,446,744,073,709,551,616
2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456

Kelkaj de ĉi tiuj nombroj prezentas la kvanton de valoroj reprezenteblaj uzante komunajn komputilajn datumtipojn. Ekzemple, 32-bita vorto konsistanta el 4 bitokoj/bajtoj povas reprezenti 232 distingaj valoroj, kio povas esti estimita kiel nura bit-ŝablono, aŭ estas pli kutime interpretita kiel la sensignumaj nombroj de 0 al 232−1, aŭ kiel la limo de signitaj/signohavaj nombroj inter −231 kaj 231−1.

Aliaj rekoneblaj potencoj de 2


Pli detalaj informoj troveblas en artikolo Duumaj prefiksoj.

Rimarku ke ĉi tiel estas ne ĉiam, iam oni opinias ke 1000 bajtoj = 1 kilobajto ktp.

Ĉi tiuj nombroj ne havas speciala signifecon poj komputiloj, sed estas gravaj por homoj ĉar ili kutimas al potencoj de dek.

Ĉi tiu nombro estas la rezulto de uzado la tri-kanala RVB sistemo, kun 8 bitoj por ĉiu kanalo, aŭ kun 24 bitoj entute.

Rapida algoritmo al kontroli ĉu la nombro estas povo de du


La cifereca duuma prezento de nombroj permesas fari tre rapidan provon ĉu la donita nombro x estas povo de du:

x estas povo de du \({\displaystyle \Leftrightarrow }\) (x & (x-1)) egalas nulo.

kie & estas bitlarĝa logika KAJ operatoro.

Ekzemploj:

-1
=
1…111…1
-1
=
1…111…111…1
x
=
0…010…0
y
=
0…010…010…0
x-1
=
0…001…1
y-1
=
0…010…001…1
x & (x-1)
=
0…000…0
y & (y-1)
=
0…010…000…0

Vidu ankaŭ


Eksteraj ligiloj









Kategorioj: Entjeraj vicoj | Grandaj nombroj




Informoj kiel: 31.10.2020 06:59:39 CET

Fonto: Wikipedia (Aŭtoroj [Historio])    Permesilo: CC-BY-SA-3.0

Ŝanĝoj: Ĉiuj bildoj kaj plej multaj desegnaj elementoj rilataj al tiuj estas forigitaj. Iuj Ikonoj estis anstataŭigitaj per FontAwesome-Ikonoj. Iuj ŝablonoj estis forigitaj (kiel "artikolo bezonas vastiĝon) aŭ atribuitaj (kiel" hatnotoj). CSS-klasoj estis aŭ forigitaj aŭ harmoniigitaj.
Vikipedio-ligoj, kiuj ne kondukas al artikolo aŭ kategorio (kiel "Redlinks", "ligoj al la redaktopaĝo", "ligoj al portaloj") estis forigitaj. Ĉiu ekstera ligo havas plian FontAwesome-Ikonon. Krom kelkaj malgrandaj ŝanĝoj de dezajno, rimedo-ujo, mapoj, navigado-skatoloj, parolitaj versioj kaj Geo-mikroformatoj estis forigitaj.

Bonvolu rimarki: Ĉar la donita enhavo estas aŭtomate prenita el Vikipedio en la donita tempo, mana kontrolado estis kaj ne eblas. Tial LinkFang.org ne garantias la ekzaktecon kaj aktualecon de la akirita enhavo. Se estas informo malĝusta tiutempe aŭ malĝusta ekrano, bonvolu senti vin libera. kontaktu nin: retpoŝto.
Vidu ankaŭ: Presaĵo & Privateca politiko.