Reelo


Reeloj (reelaj nombroj) estas intuicie priskribeblaj kiel nombroj, kiuj estas bijekciaj al la punktoj sur malfinia rekto, la nombra akso. Historie la termino reala nombro estis konstruita responde kaj kontraste al imaginara nombro. En Esperanto oni kutime uzas apartan substantivan radikon 'reel'.

Reelo povas esti racionalaneracionala; algebratranscenda; kaj pozitiva, negativanulo.

Teorie la reelojn eblas prezenti per poziciaj frakcioj, havantaj malfinie multajn ciferojn dekstre de la on-komo. Tamen oni praktike neniam povus skribi la pozician frakcion de neracionala nombro, ĉar oni bezonus infinite multan tempon kaj spacon.

Por la aro de ĉiuj reeloj oni kutime uzas simbolon R aŭ ℝ.

Enhavo

Historio


Frakcioj estis uzataj de la egiptoj jam ĉirkaŭ 1000 a.K.. Ĉirkaŭ 500 a.K. grekaj matematikistoj gvidataj de Pitagoro notis la neceson de neracionalaj nombroj.

La strikta teorio de reeloj estis evoluigita nur en dua duono de 19-a jarcento laŭ verkoj de K. Weierstrass, R. Dedekind kaj G. Cantor.

Difino


Konstruo de la reeloj el la racionaloj

Ekzistas pluraj manieroj konstrui la reelojn surbaze de la racionalaj nombroj. Ekzemple, oni povas difini reelon kiel dedekindan tranĉon de la racionalaj nombroj.

Aksiomoj pri la reeloj

Oni povas karakterizi la korpon de reeloj per tiuj aksiomoj (ĝis izomorfio):

Ankaŭ estas la aksiomo de Cantor-Dedekind kiu priskribas rilaton de reeloj al geometrio.

Demonstrado de Cantor pli la "pligrandeco" de la infinito de reelaj

Post montrinte la paradoksoj de malfinio, kiu montras, ke la racionalaj nombroj, kvankam malfinie pli nombraj ol la entjeraj nombroj estas tamen "egale" nombraj, ĉar eblas konstrui parigadosistemon, per kiu ĉiu ero de la unua aro estas parigita laŭ ensurĵeto kun ĉiu ero de la dua. Sed kun la sama rezono, eblas pruvi, ke la malfinio de la aro de reeloj (kardinalo de kontinuaĵo) estas pli granda!

Ni supozu, ke tia parigado estus efektivigita. Do ni ricevas tabelon, en kies unua kolumno troviĝas la tuta vico de la malfininombraj entjeroj ("potenco de la malkontinua"), en la sekvaj estos, linio post linio la laŭvicaj decimaloj de la ĉiu reela nombro parigita kun ĉiu entjera.
Jen nun ni konstruu reelon kies unua decimalo estu io ajn krom la unua decimalo de la unua reelo de la tabelo. Ties dua decimalo ni faru io ajn krom la dua decimalo de la dua reelo de la tabelo. Kaj tiel plu (malfinie kompreneble!)
Do nun tiu konstruita nombro ne povos esti parigita kun la unua entjero, ĉar ties unua decimalo nepre estos malsama. Ĝi ne povos esti parigita kun la dua, ĉar ĝia dua decimalo estos malsama. Kaj tiel plu. Do tiu nombro NE troviĝas en la supozita tuta parigado. CQFD (latine: Quod erat demonstrandum, kio estis pruvenda).

Vidu ankaŭ









Kategorioj: Nombroj




Informoj kiel: 31.10.2020 01:02:55 CET

Fonto: Wikipedia (Aŭtoroj [Historio])    Permesilo: CC-BY-SA-3.0

Ŝanĝoj: Ĉiuj bildoj kaj plej multaj desegnaj elementoj rilataj al tiuj estas forigitaj. Iuj Ikonoj estis anstataŭigitaj per FontAwesome-Ikonoj. Iuj ŝablonoj estis forigitaj (kiel "artikolo bezonas vastiĝon) aŭ atribuitaj (kiel" hatnotoj). CSS-klasoj estis aŭ forigitaj aŭ harmoniigitaj.
Vikipedio-ligoj, kiuj ne kondukas al artikolo aŭ kategorio (kiel "Redlinks", "ligoj al la redaktopaĝo", "ligoj al portaloj") estis forigitaj. Ĉiu ekstera ligo havas plian FontAwesome-Ikonon. Krom kelkaj malgrandaj ŝanĝoj de dezajno, rimedo-ujo, mapoj, navigado-skatoloj, parolitaj versioj kaj Geo-mikroformatoj estis forigitaj.

Bonvolu rimarki: Ĉar la donita enhavo estas aŭtomate prenita el Vikipedio en la donita tempo, mana kontrolado estis kaj ne eblas. Tial LinkFang.org ne garantias la ekzaktecon kaj aktualecon de la akirita enhavo. Se estas informo malĝusta tiutempe aŭ malĝusta ekrano, bonvolu senti vin libera. kontaktu nin: retpoŝto.
Vidu ankaŭ: Presaĵo & Privateca politiko.